Transition of CO₂ Enhanced Oil Recovery to Carbon Storage: Experimentally Constrained Reactive Transport Model

Susan Carroll, Megan Smith, Yue Hao, and Harris Mason

Petroleum Technology Research Center – Canada, Lynn Watney (et al.), KGS, Lee Spangler, Big Sky CSP, Jessie Maisano, UT Austin CT Lab, Rachel Lindvall, Zurong Dai, LLNL

Lawrence Livermore National Laboratory

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Schlumberger, "Carbonate Reservoirs," 2007.

Goals and Benefits

- To quantify key relationships in reactive transport models to constrain final CO₂ storage estimates.
- To calibrate down hole logging measurement methods to estimate carbonate formation permeability.
- Our results improve prediction of changing CO₂ storage capacity in carbonate reservoirs as a consequence of enhanced oil recovery (±30%)

Wellington, Kansas Demonstration

•Dolomite (Ca,Mg)CO₃

Dissolution yields preferential flow paths in more heterogeneous carbonate rocks

Dissolution yields preferential flow paths in more heterogeneous carbonate rocks

Figure 12: Qualitative correlation between permeability contrast (k_f/k_i , increasing towards the right) and evolution of dissolution patterns from stable to less stable.

Model parameters are constrained by characterization, pressure, and solution data

Reactive Transport Model

Reactions

calcite + H⁺ = Ca⁺⁺ + HCO₃⁻ dolomite + 2H⁺ = Ca⁺⁺ + Mg⁺⁺ + 2HCO₃⁻ $CO_{2(aq)} + H_2O = H^+ + HCO_3^-$ MgHCO₃⁺ = Mg⁺⁺ + HCO₃⁻ CaCO_{3(aq)} + H⁺ = Ca⁺⁺ + HCO₃⁻ CaHCO₃⁺ = Ca⁺⁺ + HCO₃⁻

Mineral Reaction Rates

$$\frac{dn}{dt} = -Sk_{298.15K}e^{-\frac{E}{R}\left(\frac{1}{T} - \frac{1}{298.15}\right)} \left(1 - \frac{Q}{K}\right)$$

Permeability-Porosity n – best fit

$$K_t = K_0 \left(\frac{\phi_t}{\phi_0}\right)^n$$

Surface Area-Porosity m - 2/3

$$S_{t} = S_{0} \left(\frac{\theta_{t}}{\theta_{0}} \frac{\phi_{t}}{\phi_{0}} \right)^{m}$$

Evolution of permeability is tied to the heterogeneity and the mineral reactivity

Mineral dissolution rates vary by 100 times and may require calibration of reactive surface area

$$\frac{dn}{dt} = -Sk_{298.15K}e^{-\frac{E}{R}\left(\frac{1}{T} - \frac{1}{298.15}\right)} \left(1 - \frac{Q}{K}\right)$$

Validation Study – Big Sky Demonstration, Duperow Formation (Lee Spangler and Stacey Fairweather)

Lawrence Livermore National

www.bigskyco2.org/kevin_dome_site_characterization

How do you scale lab experiments to the field?

Larger grid size reduces the permeability change

bulk permeability increase

Calibration of down hole logs to better estimate variable permeability with depth in carbonate reservoirs

NMR signal can be used to estimate down hole permeability

Weyburn,

Wellington, Kansas

Predicted permeability differs by orders of magnitude using standard value of *A*

Calibrate
$$A = \frac{\rho^2}{\varphi^3 v \tau^2}$$
 using independent
measures

- φ : porosity (Nuclear Magnetic Resonance)
- v : pore shape factor (2.5 for elliptical pores)
- τ : tortuosity (X-Ray Tomography, Nuclear Magnetic Resonance)
- ρ: surface relaxivity (Calibrated Nuclear Magnetic Resonance)

Daigle and Dugan JGR 2011

Tortuosity (*τ*) is extracted from high resolution tomography images and the NMR porosity

$$A = \frac{\rho^2}{\varphi^3 v \tau^2}$$

- Matrix porosity assessed by difference between XRCT and NMR porosity
- Use a random walk algorithm to extract tortuosity from segmented pore network

Test – Initial estimates of caprock-like permeability from SDR equation and standard A is due to high Fe concentrations

- Solve for A = 5.33 x 10⁻⁰⁹ m²/s²
- NMR Porosity; $\phi = 21.7\%$

 $\mathbf{k} = \mathbf{A} \cdot \mathbf{T}_{2,\text{LM}}^2 \cdot \boldsymbol{\varphi}^4$

- NMR T_{2,LM}
- Measured Permeability; k = 0.027 mD
- Solve for Relaxivity; ρ = 65.6 μm/s
 - Standard for carbonates i
 - Reflects high paramagnet conten
- NMR Porosity; $\varphi = 21.6\%$
- XRCT Tortuosity; $\tau = 3.53$ m/m
- Pore shape factor; υ= 2.5 m²/m²
 - elliptical pores
 - could be refined with XRCT data

Weyburn flow units

$$0.1$$

 0.01
 0.001
 0.0001
 0.0001
 0.0001
 0.0001
 0.0001
 0.0001
 0.01
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.01
 0.01
 0.01
 0.01
 0.001
 0.01
 0.01
 0.001
 0.01
 0.01
 0.01
 0.001
 0.01
 0.01
 0.01
 0.001
 0.01
 0.01
 0.01
 0.001
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.001
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.01
 0.1
 1
 10
Log Mean T₂ (ms)

$$A = \frac{\rho^2}{\varphi^3 \upsilon \tau^2}$$

Surface relaxivity (ρ) depends on mineralogy and Mn and Fe content

But p cannot resolve difference between estimated and measured permeability

Next steps in the calibration

$$\mathbf{k} = \mathbf{A} \cdot \mathbf{T}_{2,\text{LM}}^2 \cdot \boldsymbol{\varphi}^4$$

$$A = \frac{\rho^2}{\varphi^3 \upsilon \tau^2}$$

- Measure the Fe/Mn content for all samples
- Conduct a sensitivity study of the parameters and power functions

Schlumberger, "Carbonate Reservoirs," 2007.

Synergy

- Weyburn-Midale Carbon Storage Demonstration
- Wellington, Kansas Carbon Storage Demonstration
- Big Sky Carbon Storage Demonstration

Summary and Future Plans

- Derived key reactive-transport parameters and their ranges for carbonate rocks over a wide range of heterogeneity and initial permeability
- Conducting a validation study using core from an independent CO₂ storage formation
- Developing a protocol for calibrating the NMR signal to provide meaningful in-situ permeability measurements
- Using numerical methods to scale laboratory parameters to reservoir
- Write final topical report on CO₂ storage potential in carbonate rocks.

Bibliography

- Smith, M., Hao, Y., Carroll, S (2016) Development and calibration of a reactive transport model for porosity and permeability changes in carbonate reservoirs, International Journal Greenhouse Gas Control (submitted July 2016)
- Smith, M., Sholokhova, Y., Hao Y., and Carroll, S., 2013, Evaporite caprock integrity: An experimental study of reactive mineralogy and pore scale heterogeneity during brine CO₂ exposure. Environmental Science and Technology, <u>http://dx.doi.org/es3012723</u>.
- Carroll, S., Hao, Y., Smith, M., Sholokhova, Y. (2013), Development of scaling parameters to describe CO₂-carbonate-rock interactions for the Marly Dolostone and Vuggy Limestone, *Int. J. Greenh. Gas Control*, http://dx.doi.org/10.1016/j.ijggc.2012.12.026.
- Hao, Y., Smith, M., Sholokhova, Y., and Carroll, S. (2013) CO₂-induced dissolution of low permeability carbonates. Part 1: Numerical modeling of experiments, *Advances in Water Resources* <u>http://dx.doi.org/10.1016/j.advwatres.2013.09.009</u>
- Smith, M. Sholokhova, Y., Hao, Y., and Carroll, S. (2013) CO₂-induced dissolution of low permeability carbonates. Part 2: Characterization and experiments, *Advances in Water Resources* <u>http://dx.doi.org/10.1016/j.advwatres.2013.09.008</u>